ar X iv : m at h - ph / 0 31 10 29 v 1 2 0 N ov 2 00 3 Group theoretical approach to the intertwined Hamiltonians
نویسنده
چکیده
We show that the finite difference Bäcklund formula for the Schrödinger Hamiltonians is a particular element of the transformation group on the set of Riccati equations considered by two of us in a previous paper. Then, we give a group theoretical explanation to the problem of Hamiltonians related by a first order differential operator. A generalization of the finite difference algorithm relating eigenfunctions of three different Hamiltonians is found, and some illustrative examples of the theory are analyzed, finding new potentials for which one eigenfunction and its corresponding eigenvalue is exactly known.
منابع مشابه
ar X iv : m at h - ph / 0 31 10 01 v 4 3 N ov 2 00 4 Clifford Valued Differential Forms , Algebraic Spinor Fields
متن کامل
ar X iv : h ep - l at / 0 11 00 06 v 3 6 N ov 2 00 1 1 Matrix elements of ∆ S = 2 operators with Wilson fermions
متن کامل
ar X iv : 0 71 0 . 49 47 v 2 [ he p - ph ] 2 3 N ov 2 00 7 International scoping study of a future Neutrino Factory and super - beam facility
متن کامل
ar X iv : c on d - m at / 0 21 13 31 v 1 1 5 N ov 2 00 2 Universality classes in creep rupture
Ferenc Kun, Yamir Moreno, Raul Cruz Hidalgo, Hans. J. Herrmann Department of Theoretical Physics, University of Debrecen, P.O.Box: 5, H-4010 Debrecen, Hungary The Abdus Salam International Center for Theoretical Physics (ICTP), Condensed Matter Group, P.O.Box: 586, I-34014 Trieste, Italy, Institute for Computational Physics, University of Stuttgart, Pfaffenwaldring 27, 70569 Stuttgart, Germany ...
متن کاملar X iv : h ep - p h / 00 11 16 3 v 3 2 8 N ov 2 00 0 SLAC - PUB - 8707 hep - ph / 0011163 November 2000 Challenges in
We give an personal overview of some of the unsolved problems related to hyperon decays. We cover nonleptonic decays, radiative decays and magnetic moments. Some of the theoretical issues are also touched upon.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003